Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS One ; 16(11): e0259299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818338

RESUMEN

Accurate maps of species ranges are essential to inform conservation, but time-consuming to produce and update. Given the pace of change of knowledge about species distributions and shifts in ranges under climate change and land use, a need exists for timely mapping approaches that enable batch processing employing widely available data. We develop a systematic approach of batch-processing range maps and derived Area of Habitat maps for terrestrial bird species with published ranges below 125,000 km2 in Central and South America. (Area of Habitat is the habitat available to a species within its range.) We combine existing range maps with the rapidly expanding crowd-sourced eBird data of presences and absences from frequently surveyed locations, plus readily accessible, high resolution satellite data on forest cover and elevation to map the Area of Habitat available to each species. Users can interrogate the maps produced to see details of the observations that contributed to the ranges. Previous estimates of Areas of Habitat were constrained within the published ranges and thus were, by definition, smaller-typically about 30%. This reflects how little habitat within suitable elevation ranges exists within the published ranges. Our results show that on average, Areas of Habitat are 12% larger than published ranges, reflecting the often-considerable extent that eBird records expand the known distributions of species. Interestingly, there are substantial differences between threatened and non-threatened species. Some 40% of Critically Endangered, 43% of Endangered, and 55% of Vulnerable species have Areas of Habitat larger than their published ranges, compared with 31% for Near Threatened and Least Concern species. The important finding for conservation is that threatened species are generally more widespread than previously estimated.


Asunto(s)
Aves , Especies en Peligro de Extinción , Sistemas de Información Geográfica , Animales , Colaboración de las Masas
3.
PLoS One ; 13(1): e0191773, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29364949

RESUMEN

In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes.


Asunto(s)
Cambio Climático , Especies en Peligro de Extinción , Periquitos , Altitud , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Ecuador , Especies en Peligro de Extinción/tendencias , Bosques , Modelos Biológicos , Clima Tropical
4.
PLoS One ; 10(12): e0144264, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26656955

RESUMEN

A novel migratory polymorphism evolved within the last 60 years in blackcaps (Sylvia atricapilla) breeding sympatrically in southwestern Germany. While most individuals winter in the traditional areas in the Mediterranean, a growing number of blackcaps started migrating to Britain instead. The rapid microevolution of this new strategy has been attributed to assortative mating and better physical condition of birds wintering in Britain. However, the isolating barriers as well as the physical condition of birds are not well known. In our study, we examined whether spatial isolation occurred among individuals with distinct migratory behaviour and birds with different arrival dates also differed in physical and genetic condition. We caught blackcaps in six consecutive years upon arrival on the breeding grounds and assigned them via stable isotope analysis to their wintering areas. Analysis of the vegetation structure within blackcap territories revealed different microhabitat preferences of birds migrating to distinct wintering areas. Blackcaps arriving early on the breeding grounds had higher survival rates, better body condition and higher multilocus heterozygosities than later arriving birds. We did however not find an effect of parasite infection status on arrival time. Our results suggest that early arriving birds have disproportionate effects on population dynamics. Allochrony and habitat isolation may thus act together to facilitate ongoing divergence in hybrid zones, and migratory divides in particular.


Asunto(s)
Migración Animal/fisiología , Passeriformes/genética , Dinámica Poblacional , Aislamiento Reproductivo , Navegación Espacial/fisiología , Animales , Evolución Biológica , Cruzamiento , Alemania , Marcaje Isotópico , Región Mediterránea , Passeriformes/fisiología , Condicionamiento Físico Animal , Estaciones del Año , Reino Unido
5.
Ecol Evol ; 3(12): 4278-89, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24324877

RESUMEN

In migratory birds, traits such as orientation and distance are known to have a strong genetic background, and they often exhibit considerable within-population variation. How this variation relates to evolutionary responses to ongoing selection is unknown because the underlying mechanisms that translate environmental changes into population genetic changes are unclear. We show that within-population genetic structure in southern German blackcaps (Sylvia atricapilla) is related to individual differences in migratory behavior. Our 3-year study revealed a positive correlation between individual migratory origins, denoted via isotope (δ (2)H) values, and genetic distances. Genetic diversity and admixture differed not only across a recently established migratory polymorphism with NW- and SW-migrating birds but also across δ (2)H clusters within the same migratory route. Our results suggest assortment based on individual migratory origins which would facilitate evolutionary responses. We scrutinized arrival times and microhabitat choice as potential mechanisms mediating between individual variation in migratory behavior and assortment. We found significant support that microhabitat choice, rather than timing of arrival, is associated with individual variation in migratory origins. Moreover, examining genetic diversity across the migratory divide, we found migrants following the NW route to be genetically more distinct from each other compared with migrants following the traditional SW route. Our study suggests that migratory behavior shapes population genetic structure in blackcaps not only across the migratory divide but also on an individual level independent of the divide. Thus, within-population variation in migratory behavior might play an important role in translating environmental change into genetic change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...